Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells

Identifieur interne : 000B73 ( Main/Repository ); précédent : 000B72; suivant : 000B74

Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells

Auteurs : RBID : Pascal:13-0210440

Descripteurs français

English descriptors

Abstract

The front transparent conductive oxide layer is a source of significant optical and electrical losses in silicon heterojunction solar cells because of the trade-off between free-carrier absorption and sheet resistance. We demonstrate that hydrogen-doped indium oxide (IO:H), which has an electron mobility of over 100 cm2/V s, reduces these losses compared to traditional, low-mobility transparent conductive oxides, but suffers from high contact resistance at the interface of the IO:H layer and the silver front electrode grid. This problem is avoided by inserting a thin indium tin oxide (ITO) layer at the IO:H/silver interface. Such IO:H/ITO bilayers have low contact resistance, sheet resistance, and free-carrier absorption, and outperform IO:H-only or ITO-only layers in solar cells. We report a certified efficiency of 22.1% for a 4-cm2 screen-printed silicon heterojunction solar cell employing an IO:H/ITO bilayer as the front transparent conductive oxide.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0210440

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells</title>
<author>
<name sortKey="Barraud, L" uniqKey="Barraud L">L. Barraud</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holman, Z C" uniqKey="Holman Z">Z. C. Holman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Badel, N" uniqKey="Badel N">N. Badel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reiss, P" uniqKey="Reiss P">P. Reiss</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Descoeudres, A" uniqKey="Descoeudres A">A. Descoeudres</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Battaglia, C" uniqKey="Battaglia C">C. Battaglia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Wolf, S" uniqKey="De Wolf S">S. De Wolf</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ballif, C" uniqKey="Ballif C">C. Ballif</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>2000 Neuchâtel</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0210440</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0210440 INIST</idno>
<idno type="RBID">Pascal:13-0210440</idno>
<idno type="wicri:Area/Main/Corpus">000C13</idno>
<idno type="wicri:Area/Main/Repository">000B73</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bilayers</term>
<term>Comparative study</term>
<term>Conducting material</term>
<term>Contact resistance</term>
<term>Doped materials</term>
<term>Electron mobility</term>
<term>Free carrier</term>
<term>Heterojunction</term>
<term>High efficiency</term>
<term>Hydrogen</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Input output interface</term>
<term>Optical losses</term>
<term>Performance evaluation</term>
<term>Power markets</term>
<term>Power system economics</term>
<term>Serigraphy</term>
<term>Sheet resistivity</term>
<term>Silicon</term>
<term>Silicon solar cells</term>
<term>Silver</term>
<term>Solar cell</term>
<term>Tin addition</term>
<term>Trade</term>
<term>Transparent material</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Matériau dopé</term>
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Rendement élevé</term>
<term>Cellule solaire silicium</term>
<term>Hétérojonction</term>
<term>Perte optique</term>
<term>Echange commercial</term>
<term>Porteur libre</term>
<term>Résistivité couche</term>
<term>Mobilité électron</term>
<term>Etude comparative</term>
<term>Résistance contact</term>
<term>Interface entrée sortie</term>
<term>Evaluation performance</term>
<term>Cellule solaire</term>
<term>Sérigraphie</term>
<term>Hydrogène</term>
<term>Oxyde d'indium</term>
<term>Bicouche</term>
<term>Matériau conducteur</term>
<term>Matériau transparent</term>
<term>Argent</term>
<term>Silicium</term>
<term>Marché électricité</term>
<term>Economie réseau électrique</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Hydrogène</term>
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The front transparent conductive oxide layer is a source of significant optical and electrical losses in silicon heterojunction solar cells because of the trade-off between free-carrier absorption and sheet resistance. We demonstrate that hydrogen-doped indium oxide (IO:H), which has an electron mobility of over 100 cm
<sup>2</sup>
/V s, reduces these losses compared to traditional, low-mobility transparent conductive oxides, but suffers from high contact resistance at the interface of the IO:H layer and the silver front electrode grid. This problem is avoided by inserting a thin indium tin oxide (ITO) layer at the IO:H/silver interface. Such IO:H/ITO bilayers have low contact resistance, sheet resistance, and free-carrier absorption, and outperform IO:H-only or ITO-only layers in solar cells. We report a certified efficiency of 22.1% for a 4-cm
<sup>2</sup>
screen-printed silicon heterojunction solar cell employing an IO:H/ITO bilayer as the front transparent conductive oxide.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>115</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BARRAUD (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOLMAN (Z. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BADEL (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>REISS (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DESCOEUDRES (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BATTAGLIA (C.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DE WOLF (S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BALLIF (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue A.-L. Breguet 2</s1>
<s2>2000 Neuchâtel</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>151-156</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000503803110220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0210440</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The front transparent conductive oxide layer is a source of significant optical and electrical losses in silicon heterojunction solar cells because of the trade-off between free-carrier absorption and sheet resistance. We demonstrate that hydrogen-doped indium oxide (IO:H), which has an electron mobility of over 100 cm
<sup>2</sup>
/V s, reduces these losses compared to traditional, low-mobility transparent conductive oxides, but suffers from high contact resistance at the interface of the IO:H layer and the silver front electrode grid. This problem is avoided by inserting a thin indium tin oxide (ITO) layer at the IO:H/silver interface. Such IO:H/ITO bilayers have low contact resistance, sheet resistance, and free-carrier absorption, and outperform IO:H-only or ITO-only layers in solar cells. We report a certified efficiency of 22.1% for a 4-cm
<sup>2</sup>
screen-printed silicon heterojunction solar cell employing an IO:H/ITO bilayer as the front transparent conductive oxide.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05I01H</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Cellule solaire silicium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Silicon solar cells</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Perte optique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Optical losses</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Echange commercial</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Trade</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Intercambio comercial</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Résistivité couche</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Sheet resistivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Resistividad capa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mobilité électron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electron mobility</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Movilidad electrón</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Résistance contact</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Contact resistance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Resistencia contacto</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Interface entrée sortie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Input output interface</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Interfase entrada salida</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Sérigraphie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Serigraphy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Serigrafía</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Hidrógeno</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Plata</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Marché électricité</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Power markets</s0>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Economie réseau électrique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Power system economics</s0>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>196</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0210440
   |texte=   Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024